List of Physical Constants		
Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of sound in air at STP		$3.31 \times 10^{2} \mathrm{~m} / \mathrm{s}$
Mass of Earth		$5.98 \times 10^{24} \mathrm{~kg}$
Mass of the Moon		$7.35 \times 10^{22} \mathrm{~kg}$
Mean radius of Earth		$6.37 \times 10^{6} \mathrm{~m}$
Mean radius of the Moon		$1.74 \times 10^{6} \mathrm{~m}$
Mean distance-Earth to the Moon		$3.84 \times 10^{8} \mathrm{~m}$
Mean distance-Earth to the Sun		$1.50 \times 10^{11} \mathrm{~m}$
Electrostatic constant	k	$8.99 \times 10^{9} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{C}^{2}$
1 elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 \times 10^{-19} \mathrm{~J}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
1 universal mass unit (u)		$9.31 \times 10^{2} \mathrm{MeV}$
Rest mass of the electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Rest mass of the proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Rest mass of the neutron	m_{n}	$1.67 \times 10^{-27} \mathrm{~kg}$

Prefixes for Powers of $\mathbf{1 0}$		
Prefix	Symbol	Notation
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	$\mathrm{\mu}$	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Approximate Coefficients of Friction

	Kinetic	Static
Rubber on concrete (dry)	0.68	0.90
Rubber on concrete (wet)	0.58	
Rubber on asphalt (dry)	0.67	0.85
Rubber on asphalt (wet)	0.53	
Rubber on ice	0.15	
Waxed ski on snow	0.05	0.14
Wood on wood	0.30	0.42
Steel on steel	0.57	0.74
Copper on steel	0.36	0.53
Teflon on Teflon	0.04	

Wavelength in a vacuum (m)

Absolute Indices of Refraction $\left(f=5.09 \times 10^{14} \mathrm{~Hz}\right)$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Energy Level Diagrams

Energy Levels for the Hydrogen Atom

Classification of Matter

Particles of the Standard Model
Quarks

Leptons

Note: For each particle, there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$F_{e}=\frac{k q_{1} q_{2}}{r^{2}}$
$E=\frac{F_{e}}{q}$
$V=\frac{W}{q}$
$I=\frac{\Delta q}{t}$
$R=\frac{V}{I}$
$R=\frac{\rho L}{A}$
$P=V I=I^{2} R=\frac{V^{2}}{R}$
$W=P t=V I t=I^{2} R t=\frac{V^{2} t}{R}$

Series Circuits

$I=I_{1}=I_{2}=I_{3}=\ldots$
$V=V_{1}+V_{2}+V_{3}+\ldots$
$R_{e q}=R_{1}+R_{2}+R_{3}+\ldots$
$A=$ cross-sectional area
$E=$ electric field strength
$F_{e}=$ electrostatic force
$I=$ current
$k=$ electrostatic constant
$L=$ length of conductor
$P=$ electrical power
$q=$ charge
$R=$ resistance
$R_{e q}=$ equivalent resistance
$r=$ distance between centers
$t=$ time
$V=$ potential difference
$W=$ work (electrical energy)
$\Delta=$ change
$\rho=$ resistivity

Parallel Circuits

$I=I_{1}+I_{2}+I_{3}+\ldots$
$V=V_{1}=V_{2}=V_{3}=\ldots$
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$

Circuit Symbols

$\xrightarrow{\perp}$ cell
$\underset{\text { 〒 }}{\perp}$ battery

- - switch
-(V) voltmeter
(A)- ammeter

W resistor
variable resistor (ele) lamp

Resistivities at $\mathbf{2 0}^{\circ} \mathbf{C}$	
Material	Resistivity $(\Omega \bullet \mathrm{m})$
Aluminum	2.82×10^{-8}
Copper	1.72×10^{-8}
Gold	2.44×10^{-8}
Nichrome	$150 . \times 10^{-8}$
Silver	1.59×10^{-8}
Tungsten	5.60×10^{-8}

Waves and Optics

$v=f \lambda$	$c=$ speed of light in a vacuum
$T=\frac{1}{f}$	$f=$ frequency
$\theta_{i}=\theta_{r}$	$n=$ absolute index of refraction
$n=\frac{c}{v}$	$T=$ period
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	$v=$ velocity
$\frac{n_{2}}{n_{1}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$	$\lambda=$ wavelength
	$\theta=$ angle
$\theta_{i}=$ angle of incidence	
$\theta_{r}=$ angle of reflection	

Modern Physics

$E_{\text {photon }}=h f=\frac{h c}{\lambda}$
$E_{\text {photon }}=E_{i}-E_{f}$
$E=m c^{2}$
$c=$ speed of light in a vacuum
$E=$ energy
$f=$ frequency
$h=$ Planck's constant
$m=$ mass
$\lambda=$ wavelength

Geometry and Trigonometry

Rectangle

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
A=\pi r^{2}
$$

$$
C=2 \pi r
$$

Right Triangle

$$
c^{2}=a^{2}+b^{2}
$$

$$
\sin \theta=\frac{a}{c}
$$

$$
\cos \theta=\frac{b}{c}
$$

$$
\tan \theta=\frac{a}{b}
$$

$A=$ area
$b=$ base
C = circumference
$h=$ height
$r=$ radius

Mechanics

$$
\begin{aligned}
& \bar{v}=\frac{d}{t} \\
& a=\frac{\Delta v}{t} \\
& v_{f}=v_{i}+a t \\
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a d \\
& A_{y}=A \sin \theta \\
& A_{x}=A \cos \theta \\
& a=\frac{F_{n e t}}{m} \\
& F_{f}=\mu F_{N} \\
& F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \\
& g=\frac{F_{g}}{m} \\
& p=m v \\
& p_{\text {before }}=p_{\text {after }} \\
& J=F t=\Delta p \\
& F_{s}=k x \\
& P E_{s}=\frac{1}{2} k x^{2} \\
& F_{c}=m a_{c} \\
& a_{c}=\frac{v^{2}}{r} \\
& \Delta P E=m g \Delta h \\
& K E=\frac{1}{2} m v^{2} \\
& W=F d=\Delta E_{T} \\
& E_{T}=P E+K E+Q \\
& P=\frac{W}{t}=\frac{F d}{t}=F \bar{v} \\
& a=\text { acceleration } \\
& a_{c}=\text { centripetal acceleration } \\
& A=\text { any vector quantity } \\
& d=\text { displacement/distance } \\
& E_{T}=\text { total energy } \\
& F=\text { force } \\
& F_{c}=\text { centripetal force } \\
& F_{f}=\text { force of friction } \\
& F_{g}=\text { weight/force due to gravity } \\
& F_{N}=\text { normal force } \\
& F_{\text {net }}=\text { net force } \\
& F_{s}=\text { force on a spring } \\
& g=\text { acceleration due to gravity or } \\
& \text { gravitational field strength } \\
& G=\text { universal gravitational constant } \\
& h=\text { height } \\
& J=\text { impulse } \\
& k=\text { spring constant } \\
& K E=\text { kinetic energy } \\
& m=\text { mass } \\
& p=\text { momentum } \\
& P \text { = power } \\
& P E=\text { potential energy } \\
& P E_{s}=\text { potential energy stored in a spring } \\
& Q=\text { internal energy } \\
& r=\text { radius/distance between centers } \\
& t=\text { time interval } \\
& v=\text { velocity/speed } \\
& \bar{v}=\text { average velocity/average speed } \\
& W=\text { work } \\
& x=\text { change in spring length from the } \\
& \text { equilibrium position } \\
& \Delta=\text { change } \\
& \theta \text { = angle } \\
& \mu=\text { coefficient of friction }
\end{aligned}
$$

