THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234 Reference Tables for Physical Setting/PHYSICS 2002 Edition

List of Physical Constants		
Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
Acceleration due to gravity	g	9.81 m/s ²
Speed of light in a vacuum	С	3.00×10^8 m/s
Speed of sound in air at STP		3.31×10^2 m/s
Mass of Earth		$5.98 \times 10^{24} \mathrm{kg}$
Mass of the Moon		$7.35 \times 10^{22} \mathrm{kg}$
Mean radius of Earth		$6.37 \times 10^6 \mathrm{m}$
Mean radius of the Moon		$1.74 \times 10^6 \mathrm{~m}$
Mean distance—Earth to the Moon		$3.84 \times 10^8 \text{ m}$
Mean distance—Earth to the Sun		$1.50\times10^{11}~{\rm m}$
Electrostatic constant	k	$8.99\times10^9~\mathrm{N}{\bullet}\mathrm{m}^2/\mathrm{C}^2$
1 elementary charge	e	$1.60 \times 10^{-19} { m C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 \times 10^{-19} \text{ J}$
Planck's constant	h	$6.63 \times 10^{-34} \text{ J} \cdot \text{s}$
1 universal mass unit (u)		$9.31 \times 10^2 \mathrm{MeV}$
Rest mass of the electron	m_e	$9.11 \times 10^{-31} \text{ kg}$
Rest mass of the proton	m _p	$1.67\times 10^{-27}~{\rm kg}$
Rest mass of the neutron	m _n	$1.67\times 10^{-27}~\rm kg$

Prefixes for Powers of 10		
Prefix	Symbol	Notation
tera	Т	10^{12}
giga	G	10^{9}
mega	М	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	е	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}

Approximate Coefficients of Friction

Rubber on concrete (dry) Rubber on concrete (wet)	Kinetic 0.68 0.58	Static 0.90
Rubber on asphalt (dry) Rubber on asphalt (wet)	$0.67 \\ 0.53$	0.85
Rubber on ice Waxed ski on snow	$\begin{array}{c} 0.15 \\ 0.05 \end{array}$	0.14
Wood on wood Steel on steel Copper on steel Teflon on Teflon	$0.30 \\ 0.57 \\ 0.36 \\ 0.04$	0.42 0.74 0.53

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

Absolute Indices of Refraction $(f = 5.09 \times 10^{14} \text{ Hz})$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Energy Level Diagrams

Hydrogen

Energy Levels for the Hydrogen Atom

Classification of Matter

Mercury

A Few Energy Levels for the Mercury Atom

Particles of the Standard Model

Quarks

Note: For each particle, there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$$\begin{split} F_e &= \frac{kq_1q_2}{r^2} \\ E &= \frac{F_e}{q} \\ V &= \frac{W}{q} \\ I &= \frac{\Delta q}{t} \\ R &= \frac{V}{I} \\ R &= \frac{\rho L}{A} \\ P &= VI = I^2 R = \frac{V^2}{R} \\ W &= Pt = VIt = I^2 Rt = \frac{V^2 t}{R} \end{split}$$

Series Circuits

$$I = I_1 = I_2 = I_3 = \dots$$

$$V = V_1 + V_2 + V_3 + \dots$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Circuit Symbols

A = cross-sectional areaE = electric field strength F_e = electrostatic force I = currentk = electrostatic constant L =length of conductor P = electrical power q = chargeR = resistance R_{eq} = equivalent resistance r = distance between centerst = timeV = potential difference W =work (electrical energy) Δ = change ρ = resistivity

Parallel Circuits

$$I = I_1 + I_2 + I_3 + \dots$$

$$V = V_1 = V_2 = V_3 = \dots$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Resistivities at 20°C	
Material	Resistivity $(\Omega \bullet m)$
Aluminum	2.82×10^{-8}
Copper	1.72×10^{-8}
Gold	2.44×10^{-8}
Nichrome	$150. \times 10^{-8}$
Silver	1.59×10^{-8}
Tungsten	5.60×10^{-8}

Waves and Optics

$v = f\lambda$	c = speed of light in a vacuum
$T = \frac{1}{f}$	f = frequency
- f	n = absolute index of refraction
$ \Theta_i = \Theta_r $	T = period
$n = \frac{c}{v}$	v = velocity
	λ = wavelength
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	$\theta = angle$
$n_2 v_1 \lambda_1$	θ_i = angle of incidence
$\frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$	θ_r = angle of reflection

Modern Physics

$E_{photon} = hf = \frac{hc}{\lambda}$	c = speed of light in a vacuum
$E_{photon} = E_i - E_f$	E = energy
	f = frequency
$E = mc^2$	h = Planck's constant
	m = mass
	λ = wavelength

Geometry and Trigonometry

Rectangle	A = area
A = bh	b = base
Triangle $A = \frac{1}{2}bh$	C = circumference
	h = height
2	r = radius
Circle	

$A = \pi r^2$ $C = 2\pi r$

Right Triangle

$$c^{2} = a^{2} + b^{2}$$
$$\sin \theta = \frac{a}{c}$$
$$\cos \theta = \frac{b}{c}$$
$$\tan \theta = \frac{a}{b}$$

Mechanics

$$\begin{array}{ll} \overline{v} &= \frac{d}{t} \\ \overline{v} &= \frac{d}{t} \\ \hline & a_c = \operatorname{centripetal} \operatorname{acceleration} \\ \hline & a_c = \operatorname{acptripetal} \\ a = \operatorname{aptripetal} \\ c = \operatorname{aptripet$$